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The observation of quantum bottleneck states
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The concept of quantum bottleneck states near reaction barriers is essential
to the elucidation of chemical reaction rates and reaction dynamics. Recent studies
of the dynamics of simple gas-phase chemical reactions have revealed that the
transition state controls the detailed observable characteristics of a reaction to
a far greater degree than was generally imagined. However, observation of
such quantum bottleneck states is extremely difficult. In this article, we provide
a review of the current status of observing these quantum bottleneck states
in both bimolecular and unimolecular reactions, providing an updated picture
of the concept of quantum bottleneck states in chemical reactions.
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1. Introduction

Much of our understanding of the dynamics of chemical reactions is based on
the concept of the transition state. For reactions occurring under thermally averaged
conditions, transition state theory (TST) provides a fairly accurate predictive tool
to compute the reaction rate constant [1]. The activation energy, pre-exponential
factor and tunnelling coefficient of a reaction can usually be well modelled based
on the local characteristics of the potential energy surface near the transition state.
Our focus here, however, is on the utility of the transition state concept to interpret
results obtained at a more detailed level, such as provided by molecular beam
experiments, transition state spectroscopy, or laser photodissociation of jet-cooled
molecules. While the dynamics of barrier crossing is obviously central to the process
of chemical reaction, it remains unclear precisely how the properties of the transi-
tion state will imprint themselves upon the microscopic observables such as the
differential cross-section (DCS). Recently, however, experiments and theory have
begun to reveal certain aspects of the connection between laboratory observation
and the quantum dynamics near the transition state. In this review, we discuss the
recent progress that has been made in observing and interpreting the quantum
structure of the transition state. A central theme of this work is a discussion of
how the discrete spectrum of quantum states at the transition state influences the
detailed dynamical observables of a chemical reaction.

In the traditional formulation of TST due to Eyring [2, 3], the transition state
corresponds to an activated molecule with the reaction coordinate frozen at a value
corresponding to the barrier maximum, i.e. s¼ sb. The activated molecule is thus
characterized by a spectrum of discrete quantum levels corresponding to the bound
motion of the collision complex with s held fixed. Taken as a function of the reaction
coordinate, the corresponding density of states is minimal at the transition state
in variational TST [4, 5]. The density of states, and thus the rate constant, can be
computed approximately from the potential energy surface (PES) using a vibration-
ally adiabatic model [6]. It is of interest to determine whether the quantum states
can be taken literally and in principle observed, or if the discrete spectrum of states
is merely a formal construction. Clearly, the level positions will be sensitive to
the choice of reaction coordinate and the bound mode–mode coupling. However,
such formal ambiguities do not preclude the existence of a discrete assignable set
of transition state levels, albeit shifted from zero-order predictions. A more serious
matter is the coupling to the continuum through the reaction coordinate itself.
Thus, the instantaneous transition state energy levels are effectively broadened even
in the absence of nonadiabatic coupling. A clear observation of the level structure
is only likely to be possible for the lowest lying states where the level spacings are
larger than the intrinsic widths.

The characterization of the energy level spectrum of the transition state can be
made more precise if the motion along the reaction coordinate exhibits dynamical
trapping. For example, if sufficiently deep wells exist on the adiabatic potential
surfaces, resonance states will exist and can be assigned quantum numbers cor-
responding to the activated complex. Such Feshbach resonances were long predicted
from theory [7, 8], but have only recently been unambiguously observed in the
laboratory [9–11]. As the matter of observing Feshbach resonances has been
reviewed recently [12–15], we omit here a detailed discussion of this subject. Instead,
we focus on cases where the low-lying vibrationally adiabatic surfaces are pure
barriers (or exhibit wells too shallow to support resonances) and hence where TST
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should be most valid. For such reactions, the dynamical trapping is merely the
slowing down of the translational motion near the barrier maximum. Friedman and
Goebel [16], Friedman and Truhlar [17] and Seideman and Miller [18] have noted
that the S-matrix for the one-dimensional barrier passage problem exhibits complex
energy poles that are in some ways analogous to those of Feshbach resonances.
Corresponding Seigert-state [19] wave functions may be determined analytically
for sufficiently simple one-dimensional barriers or by using the numerical spectral
quantization method for multidimensional reactions [20–22]. These assignable
quantum (or quantized) bottleneck states (QBS) are weakly localized near the
adiabatic barrier and exhibit exponential decay in the time domain with a lifetime
consistent with the closest pole to the real energy axis. The most important
conclusion from this work is that the intrinsic width of the transition state levels
should be approximately � � �hh!, where ! is the barrier frequency of the adiabatic
barrier. (Note that while the width might appear to go to zero for a flat-topped
barrier, anharmonicity and nonadiabatic coupling then dominate to maintain
a broad feature.) While the barrier frequency is generally expected to be of the
same magnitude as the bound frequencies for the most coupled modes, a propitious
factor of 1/2� multiples line-widths compared to level spacings and suggests that
in principle the first few levels may often be observable.

An important advance in the study of the quantum structure of the transi-
tion state was made recently by Truhlar and co-workers [23–27]. By analysing the
cumulative reaction probability obtained using converged numerical scattering
simulations, they found clear signatures of the QBS for a number of three-atom
reactions. Near the energy for QBS, discernable step-like features appeared in
the cumulative reaction probability that were consistent with quantized thresholds
to reaction. It was noted that the QBS ‘controlled’ reactivity in the sense that
knowledge of the positions and widths of these states allowed the microcanonical
rate constant to be reconstructed. The astonishing conclusion of more recent
work is that the QBS control of the reaction extends even to the level of state-
to-state DCS.

We divide our discussion of the observation of QBS into two parts: (1) those
systems studied as full collision problems and (2) those systems studied as half-
collisions. While the work of Truhlar and colleagues has clearly established the
importance of QBS to the theory of chemical reactions, identifying unique signatures
of the QBS in observables accessible to experiment represents a significant challenge.
For bimolecular (i.e. collisional) reactions, impact parameter averaging washes out
the clear step-like structures predicted by Truhlar and co-workers for single values
of the total angular momentum. Deeper analysis of the state-resolved DCS and
integral cross-sections (ICS) is required to establish the nature of the influence of
the QBS. In half-collision experiments, such as those designed to study the energy-
selected unimolecular decay rate, the problem of impact parameter averaging is
largely avoided. However, the step-like features predicted for the unimolecular rate
assume statistical dynamics for the complex that may be in question for particular
systems. In principle, the cleanest observation of a QBS would be provided by
transition state spectroscopy, another problem invoking half-collision dynamics.
Neumark [28] has established the utility of electron photodetachment spectroscopy
of negative ion precursors for identifying reactive resonances in neutral reactions.
Analogously, a QBS is expected to yield a broad peak in the kinetic energy spectrum
of the detached electron at the energy of the dynamical barrier. As transition state
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spectroscopy has been the subject of a number of recent reviews, we omit any

detailed review of transition state spectroscopy in this work.

2. The theory of barrier passage

The traditional dynamical formulation of TST [29] is based on an analysis of

the barrier passage problem. The rate of a reaction is thus computed from the flux

through a dividing surface situated at the top of a dynamical barrier parameterized

by a reaction coordinate. When the quantized nature of the motion orthogonal to

the reaction coordinate is considered, the multidimensional dynamics is governed

by a set of vibrationally adiabatic potential curves [30]. In natural collision coordi-

nates, the coordinate ‘s’ represents distance along the minimum-energy path, while

the orthogonal vibrational modes are described by the normal mode coordinates ‘u’.

In the simplest form, the vibrationally adiabatic theory is constructed assuming

that the quantum numbers n corresponding to coordinates u are conserved during

the collision [30, 31]. Thus, vibrationally adiabatic potential curves are obtained

of the form

Vadðs; nÞ ¼ V0ðsÞ þ "nðsÞ ð2:1Þ

where V0(s) is the potential along the reaction path and "n(s) are the quantized

state energies of the orthogonal vibrational motion. The rotational states of the

transition state complex are most often represented using a separable rigid rotor

model with geometries computed along the reaction path. Thus, in this picture,

the threshold energy for the reaction is represented by a discrete set of quantized

bottleneck energies. These energies can be labelled by the vector of internal quantum

numbers of the orthogonal vibrations at the barrier, EQBS
n , or by a simple scalar

ordering, EQBS
i . The QBS energies are approximately equal to the barrier energies

of Vad(s; n) and correspond to the lowest allowed rotational level. A more precise

value of EQBS
n is provided by the real part of the Seigert state energy (see below).

While the vibrationally adiabatic theory of reactions (and, equivalently, micro-

canonical variational TST) has proven to be very useful in the computation of

reaction rate constants, it has been regarded as a highly approximate representation

of the detailed reaction dynamics. Indeed, the separation of time scales between

the s-motion (slow) and the u-motion (fast) required for the rigorous validity of

the model are seldom satisfied for real reactions. Therefore, it was surprising and

important when Truhlar and co-workers [23, 25–27] observed clear signatures of

the QBS in the results of exact quantum scattering calculations at energies near

the adiabatic barrier maxima. Despite the significant approximations made, the

adiabatic model seems to capture the essence the dynamics near the transition state.

In particular, it confirms the near separability of the dynamics along the reaction

coordinate near the barrier upon which TST is based.

In the remainder of this section, the theory for the dynamics of barrier passage

leading to QBS is reviewed. In section 2.1, the simple case of one-dimension barriers

is considered. While such models are clearly unrealistic, the essential pole structure

of the S-matrix underlying the QBS emerges in a transparent way. In section 2.2,

the generalization of the results to higher dimensional dynamical treatments is

presented.
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2.1. The quantum dynamics of one-dimensional barriers
The quantum transmission of a particle through a one-dimensional potential

barrier is characterized by a threshold in the transmission coefficient, T(E ), located
at an energy near the barrier height, V0. The parabolic barrier provides the simplest
one-dimensional problem,

VðsÞ ¼ V0 �
1

2
ks2 ð2:2Þ

which can be easily solved analytically to obtain

TðEÞ ¼
1

1þ exp 2� V0 � Eð Þ=�hh!ð Þ
ð2:3Þ

where ! ¼
ffiffiffiffiffiffiffiffiffi
k=�

p
with � being the particle mass. When taken as a function of

a complex energy, z, T(z) exhibits poles at

zn ¼ V0 � i�hh! nþ
1

2

� �
n ¼ 0, 1, . . . ð2:4Þ

As discussed by Seideman and Miller [18], Seigert-state wave functions correspond-
ing to these poles may be obtained simply by replacing ! with i! in the harmonic
oscillator eigenstates. A more realistic, yet analytically solvable, barrier is provided
by the Eckart potential

VðsÞ ¼
A�

1þ �
þ

B�

1þ �ð Þ
2

with � ¼ exp s=að Þ ð2:5Þ

The barrier height, barrier frequency and exothermicity for this potential are given by

V0 ¼
Aþ Bð Þ

2

4B
ð2:6Þ

! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2�

B2 � A2ð Þ
2

8B3

s
ð2:7Þ

�V ¼ �A ð2:8Þ

respectively. The transmission coefficient was derived formally by Eckart [32] to be

TðE Þ ¼
cosh 2� �� �ð Þ½ � þ cosh 2��½ �

cosh 2� �þ �ð Þ½ � þ cosh 2��½ �
ð2:9Þ

with

� ¼
1

2

ffiffiffiffi
E

C

r
� ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E � A

C

r
� ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B� C

C

r
C ¼

�hh2

8�a2
ð2:10Þ

In the case of a symmetrical barrier, i.e. A¼ 0, it is easily shown that the complex
energy poles are located at

En ¼
�hh2k2n
2�

ð2:11Þ
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where

kn ¼
1

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�V0

�hh2a2
� 1

r
� i nþ

1

2

� �" #
ð2:12Þ

As V0 increases, holding ! constant, the Eckart poles approach those for the
parabolic barrier. As illustrated in figure 1, the poles curve towards lower real
energy as n increases. When V0 > �hh!, the position of the dominant pole (that pole
closest to the real axis) is usually well approximated by the parabolic approximation
as shown in the figure.

As the barrier-crossing problem exhibits a clear pole structure, it is tempting
to invoke the model of scattering resonance to interpret the dynamics. Indeed,
a number of traditional hallmarks of a resonance are fulfilled. For example,
a time-dependent wavepacket launched from the vicinity of the barrier will ‘hang-
up’ on the dominant pole and the long time dynamics is characterized by exponential
decay of correlations and a stable form of the probability density. Furthermore,
the collisional time-delay exhibits the classic peaking at the energy of the barrier
maximum. Friedman and Truhlar [17] made the resonance connection more precise
by a numerical study of the quantum dynamics of a series of one-dimensional

Figure 1. The Eckart barrier and the poles of the transmission coefficient in the complex
E-plane. In the upper panel, we show the Eckart barrier with parameters chosen
to mimic the HþH2 reaction along with the parabolic approximation. The lower
panel depicts the complex E-plane, where the poles from the Eckart potential are
shown with dots while those for the parabolic barrier are shown with crosses.
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potentials. Starting with a double barrier potential exhibiting a clear shape
resonance, the potential was deformed continuously into a single barrier. The pole
for the shape resonance was mapped smoothly to the dominant pole for the barrier.

Despite the points of contact with resonance theory, the energy dependence of
the barrier transmission probability exhibits a threshold and is clearly distinguish-
able from the traditional Lorentzian resonance profile of a Breit–Wigner isolated
narrow resonance. Indeed, the barrier poles are never isolated. If the transmission
coefficient is reconstructed as a pole expansion [15], the influence of the full analytic
structure is apparent:

TðEÞ ¼ 1�
Y1
n¼0

kn

k� kn

�����
�����
2

ð2:13Þ

Thus, if we attempt to decompose the S-matrix as a term from the dominant pole
and a background contribution,

SðEÞ ¼ SbgðEÞ
E � z�0
E � z0

� �
ð2:14Þ

we find that the background term varies with energy about equally rapidly as does
the pole term. Furthermore, we can construct a continuation process parallel
to that of Friedman and Truhlar but starting from a potential exhibiting threshold
behaviour.

In transition state spectroscopy, the occurrence of a potential (or dynamical)
barrier yields a peak in a Franck–Condon spectrum centred at the corresponding
energy of the barrier maximum. This phenomenon can be anticipated simply from
the Condon reflection principle. A more detailed quantum mechanical analysis
reveals that the line-shape for the barrier peak is distinct from the typical Fano-
profile that applies to transitions to resonance states. Using a time-dependent
formulation of the Franck–Condon spectrum, Sadeghi and Skodje [33] derived
a line-shape formula containing three parameters: the barrier height V0, the barrier
frequency ! and a real asymmetry parameter � that depends on the details of the
overlap between the initial (ground state) wavepacket with the barrier potential

Ið�EÞ / e�2i��B �, ��ð Þ � ¼ �
i�E

2�hh!
þ
1

4
ð2:15Þ

where B is the beta-function and �E¼E–V0. Equation (2.15) can be viewed as
a multiple-pole extension of the traditional single-pole Lorentzian profile. Unfor-
tunately, the line-shape differences between Feshbach resonance and QBS are subtle
and even modest amounts of rotational broadening or resolution error will mask
the distinctions. Accurate theory is required to differentiate conventional resonance
peaks from QBS peaks. Given an accurate PES, the spectral quantization method
can be used to generate the wave functions associated with given peaks and thus
make a precise assignment.

2.2. Multidimensional bimolecular reactions
To understand the influence of the QBS upon any real chemical reaction, we

must consider the multidimensional character of the reaction. There are two essential
generalizations required for the simple one-dimensional picture presented above.
First, the possibility of internal excitation of the vibrational modes of the collision
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complex must be included. Such excitations will generally lead to the influence of
more than one QBS threshold on the reaction dynamics. Second, collisions occurring
in three dimensions naturally involve a distribution of impact parameters. Hence,
each QBS of the complex leads to a broad progression of rotational states, which
may in turn cause the energy signatures of the QBS to be smeared over a range
of energies.

We first consider a bimolecular reaction that takes place at a fixed value of
the (conserved) total angular momentum, J. Then, the detailed reaction dynamics
is described by a set of state-to-state reaction probabilities, PR(n! n0;E,J), where
n (n0) is the collection of initial (final) quantum numbers and E is the total energy.
The reaction probabilities are sensitive to the barrier crossing dynamics and also
to the rovibrationally nonadiabatic dynamics coupling in the entrance and exit
channels. The cumulative reaction probability, NR(E, J ), is obtained by summing
over all open channels of the reaction consistent with the conserved quantities (E, J ),

NRðE,JÞ ¼
Xopen
n, n0

PRðn! n0;E, JÞ ð2:16Þ

A less averaged quantity is the total reaction probability for the initial state n, which
is obtained by summing only over final product states

PRðn;E,JÞ ¼
Xopen
n0

PRðn! n0;E, JÞ ð2:17Þ

or an analogous final-state selected probability by summing, instead, over n. The
canonical rate constant, k(T ), is obtained by a Boltzmann average and an impact
parameter sum of NR(E, J ) to obtain the well-known expression

kðTÞ ¼

R
dE e�E=kT

P
J

ð2J þ 1ÞNRðE, JÞ

hQRðTÞ
ð2:18Þ

where QR(T ) is the canonical partition function per unit volume of the reagents.
Similar initial state specific rate constants are obtained by replacing NR(E, J ) with
PR(n;E, J ) in equation (2.18).

The influence of the QBS is most transparent if we model PR(n! n0;E, J ) and
NR(E, J ) using the adiabatic theory of reactions. Thus, we assume that the internal
quantum numbers of the collision complex are conserved through the course of the
reaction and so an initial state, ni, correlates to a specific final state, ni

0, we have

Nad
R ðE, JÞ ¼

Xopen
i

Pad
i ðni ! n0i;E, JÞ ð2:19Þ

If the reaction probabilities for the individual adiabatic states are modelled using
a set of parabolic barriers fit to the adiabatic potential curves, we have

Nad
R ðE,JÞ ¼

Xopen
i

1

1þ exp 2� EQBS
i ðJÞ � E

� �
=�hh!i

h i ð2:20Þ

where !i is the barrier frequency of the adiabatic barrier that will depend on
J through the centrifugal modification to the adiabatic potential. Equation (2.20)
is seen to exhibit a series of steps at the energies of the QBS that are resolved if the
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QBS spacings are greater than �hh!i=2�. If the cumulative reaction probability is
differentiated with respect to E, the resulting density of reactive states, 	R(E, J )�
dNR/dE, shows peaks at the QBS energies that are more easily identified in practice.

Reactive steps in the cumulative reaction probability obtained from a quantum
scattering calculation were apparently first noted by Bowman for the O(3P)þH2

reaction [34]. Truhlar and co-workers have analysed the exact quantum dynamics
for a number of triatomic reactions using a treatment based on the QBS. They
have found that the QBS were often quite apparent in NR(E, J ) and even more
strongly so in 	R(E, J ). As an illustration, we consider the DþH2!HþHD
reaction that we have modelled using converged quantum scattering calculation
for the BKMP2-PES. Chatfield et al. carried out a very similar study of this reaction
on the LSTH-PES [27]. In the upper panel of figure 2, we show NR(E, J¼ 0) vs. EC,
where we see that several of the reactive steps are clearly apparent. In the lower
panel of figure 2 we plot 	R(E, J ) obtained by numerical differentiation of NR(E, J ).
The peaks in 	R(E, J ) are more apparent than the steps in NR(E, J ). The peak
positions were found to agree well with an independent determination of the QBS
energies obtained using the spectral quantization method [35]. The QBS are labelled
using the symmetric stretch and bending quantum numbers of a collinear triatomic

Figure 2. The converged quantum scattering results for the DþH2!HDþH reaction
on the BKMP2-PES. The upper panel shows the cumulative reaction probability,
NR(E,J¼ 0) vs. EC. The step-like features associated with the QBS threshold energies
are clearly visible. In the lower panel, the density of reactive states, 	R(E,J¼ 0), vs.
EC exhibits easily identified peaks at the QBS energies.
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molecule (
ss,
b
�). The exact QBS energies are found to be in reasonable agreement

with the barrier heights for the corresponding vibrationally adiabatic potential
curves. The reactive steps persist at higher values of angular momentum, although
the density of states increases when J> 0 as the odd bending levels become
symmetry allowed. The values of EQBS

i as a function of total angular momentum
can be obtained by finding the peak positions of 	R(E, J ). The resulting spectrum
of energies is plotted in figure 3 (computed for the reverse reaction, HþHD) vs.
the quantity J(Jþ 1). The levels are seen to exhibit J-shifting reasonably consistent
with the separable expression for rotational levels of a linear molecule:

EQBS
i ðJÞ ¼ EQBS

i ð0Þ þ BiJ � ðJ þ 1Þ ð2:21Þ

Finally, we note that several reactive steps are also clearly visible in the total reaction
probability, PR(n;E, J ), shown in figure 4 for J¼ 0 for the ground state of p-H2.

As emphasized by Truhlar and co-workers, the QBS control the reactive flux
by providing a set of discretely spaced thresholds to reaction. In principle, we can
model the actual energy dependence of NR(E, J ) based solely on the properties of
the QBS. Because TST is approximate and thus the adiabatic barriers are recrossed,
it is necessary to introduce transmission coefficients into equation (2.20) to obtain
an accurate result

NRðE, JÞ ¼
Xopen
i

�i

1þ exp 2� E � EQBS
i ðJÞ

� �
=�hh!i

h i ð2:22Þ

Using equation (2.22) with �i determined as numerical fitting parameters, it is
possible to obtain a representation of NR(E, J ) nearly indistinguishable from the
exact result. The need to obtain �i from the exact scattering calculation is a limita-

Figure 3. The peak positions of 	R(E, J ) vs. J(Jþ 1) for the HþDH!DþH2 reaction
on the BKMP2-PES. The energies of the rotationally excited QBS are seen to be
in reasonable agreement with the separable form, equation (2.21). Some of the peaks
exhibit bifurcation vs. J, which accounts for the apparent discontinuities. Smooth
progressions can be obtained using the fitting expression, equation (2.22).
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tion on the predictive power of this method. However, a reasonable TST-level result

is obtained by simply setting �i ¼ 1.

For a bimolecular chemical reaction, neither NR(E, J ) nor PR(n;E, J ) is an

accessible experimental observable. The influence of the QBS must, instead, be

sought in the scattering cross-sections. Such observations necessarily involve an

explicit averaging of the impact parameter of the collision and hence a sum over

contributions from different values of J. The QBS energies, which act as threshold

energies, progressively shift to higher energy with J, as in equation (2.21). Thus,

a single threshold energy EQBS
i for fixed J is replaced by a rotational progression

of thresholds and we would expect the step-like feature to be smeared out in the

energy dependence of the cross-sections. Indeed, numerical scattering calculations

indicate that the reactive steps are masked by impact parameter averaging. Consider

the energy dependence of the excitation function for the DþH2!HDþH reaction,

which is the sum of the integral cross-sections for all final states of the reaction

from a fixed initial state. This quantity is the full scattering analogue of the

PR(n; E, J ), which clearly exhibited reactive steps. As seen in figure 5, the excita-

tion function is smooth with little structure except the overall reaction threshold.

While the QBS led to easily identifiable steps in the function NR(E, J ), the laboratory

observation of these states in a bimolecular collision requires an understanding of

the influence of the bottleneck states on the scattering observables.

Figure 4. Upper panel: the total reaction probability PR(n;E,J¼ 0) for DþH2(0,0) vs. EC.
Lower panel: the derivative of PR(n;E,J¼ 0) with respect to energy exhibits peaks at
the QBS energies.
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3. Strategies for observing quantum bottleneck states in reactive collisions

While the reactive steps associated with the QBS threshold energies are quite
well resolved in the cumulative reaction probability or total reaction probability
computed for fixed J, impact parameter averaging appears to wash out these
structures in the excitation function of the reaction. Thus, the signature of QBS
must be sought in the more highly resolved state-to-state DCS. This task, however,
presents a significant theoretical challenge as it is not obvious a priori how the
QBS will appear in such observables. However, recent progress has been made
in unravelling this mystery. In this section, we review two different strategies for
observing the QBS in collision experiments.

3.1. Forward scattering peaks: manifestations of time-delay
The measurement of a DCS holds the promise of at least partially undoing

the impact parameter averaging of a collision. In classical potential scattering, the
product observed at a selected COM angle, �, corresponds to at most a few possible
values of the impact parameter. While quantum effects and multidimensionality
will partially obscure this relationship for real reactions, it is expected that the
DCS is a useful tool for minimizing the blurring of averaging. It is conventional
wisdom that backward scattering of the reaction products is dominated by low-
impact parameter collisions while forward scattering results from high-impact
parameter ‘grazing’ collisions. This viewpoint can be useful in analysing the
differences of the reaction dynamics that proceed to various scattering angles.
For example, the reaction barrier will be centrifugally shifted by a higher amount
for forward scattering than for backward scattering.

Forward peaks of the final-state-selective DCS were identified by Lee and
co-workers [36] as a potential signature for the existence of reactive resonances
in the study of the FþH2 reaction. While the precise mechanism for the formation
of the forward peak was not fully elucidated, the physical picture was clearly that
the resonance trapping permitted the F–H–H collision complex to rotate and form
the forward peak. Essentially, the forward peak is a manifestation of time-delay.

Figure 5. The excitation function vs. EC for the reaction DþH2(0,0)!HDþH computed
using the BKMP2-PES. For the excitation function, the reactive steps are largely
washed out by impact parameter averaging.
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If the complex lifetime were extremely long, then the DCS would show a forward–
backward symmetry. A forward peak only suggests that the lifetime is less than
a rotational period of the complex. Great care is required in concluding that
forward peaks are the general fingerprints of resonance; however, direct dynamics
can produce similar peaks (consider the hard sphere). In general, theory is required
to firmly establish the connection between the observation and the mechanism.
For the FþHD!HFþD reaction, Skodje and co-workers [10, 11] were able to
conclude that the forward peaking in the DCS was in fact the result of a reactive
resonance and the associated collisional time-delay [37].

The reaction dynamics occurring at energies near the maximum of an adi-
abatic barrier will exhibit a time-delay of the order of ¼ 1/!, where ! is the
barrier frequency. This time-delay may give rise to forward scattering peaks
of the reaction products that could provide an experimentally accessible signature
of the QBS.

Recently, and independently, Harich et al. [35] and Althorpe et al. [38, 39]
were able to conclude that forward peaks observed in the DCS for isotopic
variants of the HþH2 reaction were associated with collisional time-delay. Using
a combined theoretical–experimental approach, Harich and colleagues [35, 40, 41]
studied the HþHD(v¼ 0, j¼ 0)!DþH2 (v

0, j0 ) reaction at a collision energy of
EC¼ 1.2 eV. The experiment was carried out using a molecular beam apparatus
that used the Rydberg-atom time-of-flight detection scheme (Rydberg tagging)
pioneered by Welge and co-workers [42]. Using an HI photolysis source for the
hot H-atoms and a liquid nitrogen-cooled nozzle for the HD beam, the Rydberg
tagging technique permitted the determination of DCS for each final rovibrational
product state of the reaction. Figure 6 shows that the low-j0 product states of
the reaction exhibit very pronounced forward peaks in the DCS. The remaining
reactive flux is localized mainly in the backward and sideways directions. The
reaction was theoretically simulated using the quantum scattering method of
Manolopoulos and co-workers [43] using the BKMP2-PES [44]. The result is
shown in the lower panel of figure 6. A closer view of the comparison between
theory and experiment for several product states is provided in figure 7. Theory
and experiment were found to be in agreement to within experimental error bars.
Furthermore, it was concluded that the forward scattered reaction product was
rotationally colder and vibrationally hotter than other scattering angles.

While the forward peaking of the DCS could be simulated by theory, a more
detailed analysis was required to determine the underlying mechanism. In par-
ticular, was the forward peaking associated with time-delay? The collisional time-
delay as a function of scattering angle could be computed from the S-matrix
using a method first proposed by Goldberger and Watson [45] and later studied
by Kuppermann and Wu [46]. If the scattering amplitude is written as f (�,E;
n! n0), then the time-delay for scattering into angle � for the reactive process
n! n0 is

 ¼ �hh
d

dE
Arg f �,E; n! n0ð Þð Þ ð3:1Þ

The time-delay function defined in this way generally exhibited irrelevant fine-scale
structure associated, for example, with the minima of | f | vs. angle [37]. Most of
this structure can be eliminated by an average over final rotational and helicity
states. In figure 8, we show the averaged time-delay at EC¼ 1.2 eV vs. scattering
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angle. The time of collision clearly shows a peak in the forward direction that is
of the order of 20 fs greater than, for example, backward scattering. This time-delay
is significantly larger and more highly peaked than the normal kinematic for-
ward enhancement observed in, for example, hard sphere scattering. Further-
more, the forward scattering naturally selects the reactive collisions occurring at
the high-impact parameter, that is high J. If the DCS is computed using only partial
waves up to a maximum Jmax, that is

d�RðJMaxÞ

d�
¼

1

4k2n

XJMax

J¼0

2J þ 1ð Þ � dJ
k,k0 ð�� �Þ � SRðn! n0Þ

�����
�����
2

ð3:2Þ

then contribution of various J-values may be inferred. In equation (3.2), (k, k0)
are initial and final helicity and d is the Wigner rotation function. As shown in

Figure 6. The differential cross-section for the reaction HþDH(0,0)!DþH2(v
0, j0) at

EC¼ 1.2 eV. The angular coordinate represents the COM scattering angle and the
radial coordinate the translational energy of the product. (a) Experimental result and
(b) the result of a converged quantum scattering calculation on the BKMP2-PES.
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Figure 8. The angle-resolved time delay vs. � for HþHD(0,0)! DþH2 at EC¼ 1.2 eV.
The time delay, given by equation (3.1), has been averaged over final states to
eliminate irrelevant fine-scale structure. The plot clearly reveals an additional 20 fs
of time delay for scattering into the forward direction.

Figure 7. The differential cross-section for the reaction HþDH(0,0)!DþH2(v
0, j0) at

EC¼ 1.2 eV for individual product states in the v’¼ 0 manifold. The symbols are the
experimental results and the solid lines are results of converged quantum scattering
calculations.
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figure 9, the forward peaking in the DCS for low-j0 states at EC ¼ 1.2 eV is the

result of high-impact parameter collisions rather narrowly localized around J¼ 25.

At this value of the angular momentum, the vibrationally adiabatic barriers are

centrifugally shifted upward by about 0.57 eV and the collision complex is ‘rotating’

at a rate of about 4� fs–1.

To firmly establish the connection between the forward peak of the DCS and

the QBS, it is necessary to examine the quantum reaction dynamics occurring at

J¼ 25 near EC¼ 1.2 eV. Does a QBS exist with these characteristics? The manifold

of QBS was obtained using the spectral quantization method with the centrifugally

shifted Hamiltonian corresponding to J¼ 25 and O¼ 0. Thus, the energy spectrum

of the transition state is given by

IðEÞ /

Z1
�1

�J¼25ð0Þ
�� �J¼25ðtÞ

	 

� eiEt=�hhdt ð3:3Þ

where �J¼ 25 is a wavepacket evolving from a variationally optimized initial state

near the transition state. As shown in figure 10, the lowest significant peak occurs

precisely at EC¼ 1.2 eV. The underlying state that gives rise to this peak is obtained

by filtering the wavepacket at the peak energy

�E /

Z1
�1

�J¼25ðtÞ � e
iEt=�hhdt ð3:4Þ

Figure 9. The reactive DCS at EC¼ 1.2 eV for HþHD(0,0) computed as a partial sum
(equation (3.2)) vs. Jmax. The partial sum reactive DCS for the DþH2(0,0) (and
DþH2(0,1)) product state in the forward direction is shown by the solid (dashed)
curve. The same partial sum for the scattering angle of 120� is shown with symbols.
The forward scattering is clearly the result of high-impact parameter collisions with
J� 25.
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The resulting state at EC¼ 1.2 eV is shown in figure 10 for the symmetric stretch

and bending coordinates and also in collinear Jacobi coordinates. It is seen that the

wave function is a mixed state involving (
ss,

^
b )¼ (1, 00) and (0, 20). The mixing is

a consequence of the near degeneracy of the two adiabatic barrier heights for J¼ 25.

The physical picture behind the formation of the forward peaks is now clear. As

illustrated by the schematic in figure 11, the collision takes place at the high-impact

parameter so that the (collinear) collision complex has already achieved an initial

rotation angle of about 70� as the barrier is approached. The complex continues

0 1 2 3 4

0.0
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.)
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Figure 10. Characteristics of the QBS giving rise to the forward product scattering in
HþHD. (a) The theoretical energy spectrum computed for the J¼ 25 centrifugally
shifted Hamiltonian. The arrow indicates the peak associated with the QBS res-
ponsible for the forward scattering. (b) The probability density of the QBS obtained
by spectral quantization plotted in normal mode coordinates. (c) The probability
density of the QBS plotted in collinear Jacobi coordinates.
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to rotate during the interval when the motion along the reaction coordinate has
slowed down near the barrier maximum. The complex then decays in the forward
direction leading to a peak at �¼ 0� when account is taken of the 1/sin � geometric
weighting factor.

Althorpe et al. [38, 39] and Zare and co-workers [47] have investigated the
dynamics of the HþD2 reaction using an approach that also combined theoretical
and experimental efforts. The experiments were carried out using the PHOTOLOC
(photo-initiated reaction analysed via the law of cosines) technique [48] with a (2þ 1)
REMPI time-of-flight detection scheme. The experiment permitted the determina-
tion of the DCS at a number of collision energies, although some angular averaging
was implicit in the results because of the nature of the PHOTOLOC scheme.
The theoretical dynamics was modelled using converged quantum scattering cal-
culations, wavepacket simulations and quasi-classical trajectory calculations.

Although experimental convolutions over the PHOTOLOC instrument function
appeared to wash out the forward scattering peaks for a number of product states,
a clear forward enhancement was observed for the DþHD (v’¼ 3,j’¼ 0) channel
at EC¼ 1.64 eV. An examination of classical trajectories contributing to this forward
peak revealed some dynamical trapping near the transition state [49]. Allison et al.
[50] noted that a centrifugally shifted vibrationally adiabatic barrier for (vss,vb)¼
(3,00) and J¼ 33 was quite close to the energy at which the peak was observed, thus
implying a connection between the QBS and the forward peaks. A more dynamically
exact treatment was provided by Althorpe et al. [38, 39] who carried out wavepacket
calculations using an initial state that modelled an incoming plane wave. Plots of the
wavepacket revealed that the backward scattering was prompt, while the forward
scattering was delayed on the order of 25 fs as the probability density for the
translational coordinate appeared to orbit the target. Such behaviour is consistent
with trapping near a QBS although the precise assignment was not attempted.
Aoiz et al. [49] have carried out quantum scattering calculations in combination
with a complex angular momentum analysis that further elucidated the dynamics
of the forward peak.

Figure 11. Schematic illustration of the time-delay mechanism for the formation of the
forward peak. For collision energies very near the height of the centrifugally shifted
adiabatic barrier (here, 1.2 eV), the collision slows down and the complex survives an
extra 1/!� 20 fs. During this added time, the complex continues to rotate at 4� fs–1,
thus allowing the products to decay into the forward direction.
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3.2. Energy oscillations in state-to-state differential cross-sections
While the forward scattering peaks can provide a signature of the time-delay

associated with passage through a QBS, it is still desirable to obtain an energy-
dependent manifestation of the QBS spectrum that would reveal a sequence of
thresholds. Thus we consider whether some vestige of the staircase structure of
reactive steps can survive impact parameter averaging in the scattering observables.
The excitation functions for reactions that have been studied so far have failed
to exhibit any clear sign of the QBS beyond the overall reaction threshold. However,
in some cases, small undulations vs. EC can be seen in the individual rovibrationally
selected ICSs. Chao and Skodje [51], for example, noted such an effect in a quantum
simulation for the process HþD2(v¼ 0, j¼ 0)!HD(v’¼ 0, j’¼ 2)þD, but the
predicted structure was likely to be at or below the experimental detection limit.
To minimize the blurring due to impact parameter averaging, it is again desirable
to consider the state-to-state DCS vs. EC at a fixed scattering angle. There are
two broad issues that must be addressed before attempting this endeavour. First,
while reaction steps are predicted in NR(E, J ) at the QBS energies, how should the
QBS thresholds manifest themselves in state-to-state reaction probabilities at fixed
J? Second, how will the structures in the state-to-state S-matrix at various fixed
J-values combine to yield the angle-dependent DCS?

A simple picture to interpret the energy dependence of the state-to-state reac-
tion probabilities, based on the adiabatic model, has recently been advanced by
Chao et al. [41] and Harich et al. [35]. As illustrated by the schematic diagram in
figure 12, the adiabatic potential curves correlate the initial and final rovibrational
states along the reaction coordinate. As no single rovibrational state will dominate
the product distribution for any reaction with an appreciable barrier, it is essential
to include the coupling between the different adiabatic curves. We note that
adiabatic curves generally become more widely spaced near the barrier as the
rotational levels correlate to bending states near the transition state. The strongest
nonadiabatic coupling tends to occur away from the barrier in the entrance
and exit valleys at, for example, avoided crossings [52]. In the language of TST,
the dynamics along the reaction coordinate in the vicinity of the barrier is nearly
separable. Thus, Harich et al. [35] conjectured that the reaction dynamics could be
approximated using one-dimensional adiabatic dynamics near the barrier with the
coupling introduced further out in the entrance and exit valleys. The S-matrix is then
approximated by expression

SðEÞ ¼ S�0 S�na Sb S
þ
naS
þ
0 ð3:5Þ

where S	0 and S	na represent the free asymptotic and the curve-hopping dynamics,
respectively, in the entrance (exit) channels and Sb is the uncoupled propagation
along a series of barriers near the transition state. Near a QBS energy (i.e. a barrier
maximum), a new term in Sb will switch on. The effect of this threshold behaviour
in the full S(E) is then to coherently redistributed among the channels through Sna

	 .
The physical picture resulting from this model is that of a set of interfering pathways
through the QBS, as illustrated in figure 12a. Hence, incident flux from a given initial
state is redistributed over several adiabatic curves by Sþna, then passes the transition
state on uncoupled curves Sb and is again coupled by S�na in the exit channel. For
a very broad class of model problems, the PR(n! n0; E, J ) predicted by this scheme
exhibits the behaviour illustrated in figure 12b. The QBS thresholds are seen to
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induce a set of out-of-phase oscillations in the individual state-to-state probabilities.
When the initial and final states are summed to obtain NR,

NR ¼
X
i,f

h f jS�0 ES�na ESb ES
þ
na ES

þ
0 jii

�� ��2 ¼X
i

jhijSbjiij
2 ð3:6Þ

the effect of the nonadiabatic couplings is averaged out leaving an expression
analogous to equation (2.20) for the reactive steps. In fact, the peaks of the out-
of-phase oscillations for the various n! n0 transitions add together to form the
reactive steps. The out-of-phase oscillations in PR(n! n0;E, J ) have been observed
in a number of reactions studied by using accurate quantum scattering calculations.
For example, Chao et al. [41] have analysed the oscillation in PR(n! n0;E, J ) vs. E
for the HþHD reaction and established the close connection to the QBS energies.
The staircase structure of NR(E,J¼ 0) in HþHD and the underlying oscillations
in the state-to-state reaction probabilities are represented in figure 13.

Figure 12. A schematic diagram illustrating the influence of QBS on the state-to-state
reaction probabilities for a chemical reaction. (a) Several vibrationally adiabatic
curves are sketched. The incident reagent flux is distributed over several adiabatic
curves through the entrance channel nonadiabatic coupling term, Sna

– . The flux
proceeds across the transition state on the uncoupled adiabatic curves via Sb. The
flux is then redistributed again over the final product states by the exit channel
nonadiabatic coupling term Sna

þ . (b) The oscillating curves are state-to-state reaction
probabilities obtained using a sequence of Eckart barriers and any physically
reasonable form of the coupling matrix. The dashed curves are the reaction
probabilities if the exit channel coupling is switched off.
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The DCS is constructed from a coherent sum of contributions from different
partial waves, for example in an atomþ diatom reaction

d�R
d�
¼

1

4k2n

X1
J¼0

2J þ 1ð Þ � dJ
k,k0 ð�� �Þ � SJ

Rðn! n0Þ

�����
�����
2

ð3:7Þ

Thus, the influence of QBS that appear as oscillations in the individual S-matrix
elements (as described above) are summed over to obtain the DCS. Thus, we
might expect the structures to be washed out. As we have noted, however, the
DCS tends to minimize the impact parameter averaging that obscures most structure
in the ICS. Using various stationary phase approximations, Miller [53] showed that
the DCS may be represented semiclassically by

d�R n! n0ð Þ

d�
�

d�el
d�
� PRðn! n0;E,Jð�ÞÞ ð3:8Þ

where �el is a smooth elastic-like cross-section and J(�) relates the scattering angle
to J through the classical deflection function. Backward scattering is expected
to correspond to J¼ 0. Hence the oscillatory structure vs. E of PR(n! n0;E,J¼ 0)
should be manifested in the DCS observed at �¼ 180�. Because for higher J,
PR(n! n0;E, J ) vs. E generally exhibits a ‘J-shifted’ oscillatory behaviour, we would
expect that the peaks of the backward oscillations will develop smoothly into

Figure 13. The reactive steps occurring in NR(E,J¼ 0) for the HþHD reaction vs. energy.
Also plotted are several individual state-to-state reaction probabilities. The plot is
intended to illustrate how the out-of-phase oscillations of the reaction probabilities
add to form the reactive steps.
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ridges in the E–� plane. Miller and Zhang [54] have suggested searching for the ridge

structures as a signature of ‘elusive’ reactive resonances. Indeed, Skodje et al. [11]

have found that such a ridge exists for the resonance-mediated FþHD!HFþD

reaction. For the HþH2 family of reactions, the ridge structures are apparent in

theoretically calculated DCSs [54, 55]. For example, in figure 14 we show a clear

ridge for the process HþD2!HDþD. In this example, as well for most other

ridges observed in the HþH2 family of reactions, the ridges tend to correspond to

the QBS oscillations and not to traditional Feshbach resonances.

The energy dependence of the DCS for HþD2!HDþD was recently investi-

gated by Dai et al. in an explicit attempt to observe the oscillations induced by the

QBS thresholds. The experiment was similar to that conducted for the HþHD

reaction described above and used a beam of hot H-atoms crossed with a supersonic

Figure 15. The DCS for the process HþD2(0,0)!HþHD(0,2) vs. EC. The laboratory
scattering angle was held fixed at �L¼ 70�, corresponding to near backward scattering
in the COM frame. The experimental results are shown with symbols while the
predictions of quantum scattering theory are represented by a solid curve.

Figure 14. The DCS for the process HþD2(0,0)!HþHD(0,0) vs. (Etot,�) computed using
quantum scattering theory. Ridge structures are seen to emanate from the peaks of
the energy oscillations apparent in the backward scattering.
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D2 molecular beam. The velocity of the D-atom product was again measured using
the Rydberg-atom time-of-flight detection scheme. The collision energy was con-
trolled through the use of a tunable dye laser for the HI-photolysis process. The
oscillations in the state-to-state DCS predicted by quantum scattering theory were
found to be most intense in the backward direction. Therefore, the detector was
situated at a fixed laboratory angle �L¼ 70� corresponding roughly to backward
scattering and the collision energy was scanned over the range 0.42–1.0 eV.
In figure 15, the DCS for the process HþD2(v¼ 0, j¼ 0)!HD(v0 ¼ 0, j0 ¼ 2)þD
is shown vs. EC. The oscillations predicted by theory (shown as a solid line) are
clearly apparent in the experimental result and the observations are in good
quantitative agreement with theory. The oscillations were also observed for other
product states and at other laboratory angles and are fully consistent with the picture
outlined above.

Finally, it was possible to directly observe the influence of a sequence of QBS
by examining the exact quantum dynamics near the transition state. Because for
backward scattering the reaction is expected to be dominated by low-impact
parameter collisions, the reaction dynamics for J¼ 0 was considered. The station-

Figure 16. The probability density of the scattering wave function for J¼ 0 of HþD2(0,0)
sliced perpendicular to the reaction coordinate at the conventional transition state.
The evolution of the probability density is illustrated at a series of collision energies.
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ary-state scattering wave function �E(R) was obtained at a sequence of collision
energies by (time) Fourier transform of a quantum wavepacket with the correct
scattering boundary conditions for HþD2(0,0) and J¼ 0. The resulting states
were sliced at the conventional transition state to obtain a probability density as
a function of the symmetric stretch and bending coordinates. As seen in figure 16,
the nodal pattern of the state evolves as the collision energy increases. At 0.4 eV,
the wave function shows a single lobe at the saddlepoint and resembles the QBS
with (vss,vb)¼ (0,00). At 0.7 eV, a pair of nodes in the bending coordinate indicates
the influence of the (0,20) state. At 0.95 eV, the (1,00) as well as (0,40) QBS is
also shaping the probability density.

4. Observing quantum bottleneck states in unimolecular reactions

Similar to bimolecular reactions, unimolecular reactions also have barriers
with QBS. Unimolecular reactions occur in a wide variety of problems where the
activation process can take place through a number of distinct mechanisms. Through
optical excitation, molecules can be promoted to electronically excited states. These
excited molecules can then dissociate directly on the excited surface, or can undergo
internal conversion to the ground-state surface followed by dissociation on this
surface. If a molecule is thermally activated through a sequence of molecular
collisions, it normally dissociates on its ground electronic surface. Infrared multi-
photon dissociation can also induce a bond-breaking process on the ground-state
surface by exciting molecules through vibrational-state ladders. Therefore, molecular
fragmentation can occur in two broadly different ways: excited-state dissociation
and ground-state dissociation. The topology of the dissociative-PES varies widely
for different species, particularly for excited-state dissociation. If the PES on which
a molecule dissociates is known, then, in principle, the dissociation rates and its
dynamics through either semiclassical or accurate quantum dynamics calculations
can be predicted. This is in fact the only way to obtain reliable information
on molecular dissociation processes for dynamical systems that cannot be treated
statistically. However, molecular dissociation on the ground state can usually
be treated statistically. One of the most successful statistical theories calculating
molecular dissociation rates is the RRKM theory, which was developed using the
RRK model and extending it to consider explicitly vibrational and rotational
energies and to include zero-point energies. Several minor modifications of the
theory have been made since its conception, primarily as a result of improved
treatments of external degrees of freedom.

The RRKM theory [56–61] is basically a microcanonical ensemble version of
TST for calculating unimolecular reaction rates. RRKM theory is based on the
additional assumptions that all vibrational states in the activated molecule are
equally probable and that the vibrational energy flows freely among the different
degrees of freedom at a rate much faster than the reaction rate. In RRKM theory,
the rate constant k(E) for unimolecular dissociation is given by

kðE, JÞ ¼ NðE, JÞ=h	ðE, JÞ ð4:1Þ

where N(E, J ) is the sum over the QBS for the active degrees of freedom in the
transition state at E, 	(E, J ) is the density of states for the active degrees of freedom
in the reactant and h is the Planck constant. Earlier treatment of N(E, J ) is based
on estimation of the vibrational frequencies of the vibrational modes orthogonal to
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the reaction coordinate in the transition state. As ab initio calculations become

more available, the vibrational frequencies of these vibrational modes in the

transition state can be calculated. Near the unimolecular reaction threshold, where

the QBS are sparse, the rate constant increases stepwise as the energy increases

due to the sequential openings of different QBS pathways one by one. However,

as the internal energy increases so does the number of vibrational states that can

be accessed at the transition and therefore the steps will be more congested. This

type of step structure has been seen in the cumulative reaction probability for

elementary bimolecular chemical reactions. As shown in equation (3.1), this step

structure lies intrinsically in the N(E, J ) function as more barrier states become

accessible in a reaction.

The concept of QBS orthogonal to the reaction coordinate at the transition state

is centrally important to unimolecular dissociation theory. Even though the notion

of QBS has been used over many decades and is essential for the validity of the

RRKM theory, the ‘reality’ of these states has been quite elusive for experimental

verification. It can be suggested that the step structures predicted near the dis-

sociation threshold in the unimolecular dissociation rate constants provide

a reasonable opportunity to observe a progression of quantized states near the

barrier. The issue is certainly to find a molecular system that is experimentally

feasible for the measurement of energy-dependent dissociation rate constants near

the unimolecular dissociation threshold. In addition, this system should be accu-

rately described by RRKM theory. An ideal molecular system for such measurement

should be more or less like the one depicted in figure 17, in which a molecule can

be excited to its electronic excited state with monochromatic light, then undergo

internal conversion to its ground electronic surface, on which the energy in the

system is randomized before its dissociation. The system should also be rather simple

Figure 17. An ideal system for unimolecular dissociation studies to probe transition-state
structures in the context of RRKM theory.
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while statistical theory can still apply. Such an ideal system for measurement is
nevertheless difficult to find and indeed has not yet been found.

In the early 1990s, the Moore group in Berkeley [62, 63] performed a ground-
breaking experiment on ketene photodissociation in the UV region in an effort to
detect QBS in the ketene dissociation through the triplet T1 state. In this land-
mark experiment (see the experimental arrangement in figure 18), a cold ketene

Figure 19. The three lowest potential-energy surfaces of ketene along the reaction
coordinate. The ketene molecule is excited by a UV laser pulse to the first excited
singlet state (S1), undergoes internal conversion to S0 and intersystem crossing to T1

and dissociates into 1CH2(a
1A1)þCO (singlet channel) or 3CH2 (X

3B )þCO triplet
channel) fragments.

Figure 18. Experimental scheme for the VUV LIF detection of CO products from ketene
photodissociation used by Moore et al. [62, 63].
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sample (4K) prepared in a helium-seeded molecular beam was excited from the
ground state S0 surface to the electronically excited singlet surface, S1, by a
frequency doubled dye laser pumped by a Nd:YAG laser (figure 19). The
CO-photodissociation product was subsequently detected using VUV laser-induced
fluorescence (LIF) through the (A 1� X 1�1) transition. The pump–probe experi-
ment allows the determination of the dissociation rate constants from the appear-
ance rate of the CO product in a specific rovibrational state at different excitation
energies. Figure 20 shows the energy dependence of the dissociation rate, k(E). The
circles are the experimental results while the solid line is the RRKM fit without
considering the tunnelling effect near the barrier. The jumps observed in k(E) were
rationalized on the basis of the ab initio barrier transition-state vibrational levels.
The step-like structure in the dissociation rate constant appeared to be explainable
within the RRKM formalism in terms of barrier transition states orthogonal to the
reaction coordinate, which become accessible in the transition state as the energy was
increased. A full analysis of the observed energy profile of k(E) was carried out
by Kim et al. [63]. The first steps in k(E) were assigned to the three lowest-energy
modes in the transition state, the H2C¼CO torsion, the C¼C¼O bend and the CH2

wag, treated in the first instance as a hindered rotor with an internal rotation barrier
of 240 cm–1 and in the last two cases as small-amplitude normal vibrations with
frequencies of 250 and 290 cm–1, respectively. By comparison, the best theoretical
values for the transition-state features were 384 cm–1 for the torsional barrier
and 252 and 366 cm�1 for the corresponding harmonic vibrational frequencies.
The threshold for triplet ketene fragmentation was pinpointed by the same analysis

Figure 20. The measured rate constant for CH2CO dissociation as a function of the
photolysis energy. The solid line is an RRKM fit to the CH2CO dissociation rate
constants. The open circles are measured rate constants. The solid line is the RRKM
fit without including the barrier tunnelling effect. The dotted line is the RRKM fit
including the one-dimensional tunnelling with a barrier frequency of 40i cm�1.
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of the k(E) experiments, yielding a vibrationally adiabatic barrier of 1281	 15 cm�1

for the exit channel, which is about 40% less than the best ab initio prediction. If the
accuracy of the various pre-1990 ab initio quantities is assumed to be valid, the
central interpretations of the breakthrough experiments on triplet ketene fragmenta-
tion is consistent with electronic structure theory. The experimental result was in
good agreement with the long-standing RRKM premise that the rate of such a
reaction is controlled by flux through the quantized transition states near the
reaction barrier.

The ketene result was first published in the 12 June 1992 issue of Science as
a cover story along with a perspective by Marcus appearing therein, entitled ‘Skiing
the Reaction Rate Slopes’ [64]. This result was heralded in the perspective as
a breakthrough test in which novel experimental evidence was advanced in support
of one of chemistry’s most fundamental theories, that is the RRKM microcanonical
form of TST. The step structure observed in the experiment was also regarded
as a clear experimental verification of the barrier transition states that has been
hypothesized in many important chemical reaction theories. A similar phenomenon
was also observed in the acetaldehyde UV photodissociation in a later study by
Leu et al. [65], where step-like structures also seem to be present in the energy-
dependent dissociation rate constant.

It is without question that the ketene photodissociation study itself [62, 63] is
a breakthrough because such careful measurement and rigorous testing of the
RRKM theory has never been carried out previously. However, there are serious
questions remaining unanswered in this work. First, it seems to be difficult to explain
several details of the step-like energy dependence of the reaction rate using the
standard RRKM theory in the original work. Second, when one-dimensional
tunnelling corrections were incorporated into the RRKM modelling of triplet ketene
fragmentation through the transition state, the empirical barrier frequencies for the
triplet transition state were found to be in the range of (100	 40)i cm�1 and
significantly lower than either the direct ab initio results or reasonable extrapolations
by a factor of at least 3. Third, the RRKM fits of k(E) near the triplet ketene
threshold gave a density of reactant states equal to 1.11gt times the Whitten–
Rabinovich estimate, where gt is the number of spin sublevels in the T1 manifold
strongly coupled by intersystem crossing to S0, while both experiment [66] on the
singlet dissociation channel of ketene and direct state counts [67] achieved by an
extensive theoretical anharmonic vibrational analysis [68] of the S0 surface have
shown recently that gt is also very close to 1 rather than 3. The similarity of gt
between the singlet and triplet channel implies that triplet channel dissociation
somehow shows some singlet characteristics. Furthermore, experimental investiga-
tion on the ketene photodissociation [69] shows evidence that strong vibrational
coupling in triplet ketene between internal rotation about the C–C bond and
wagging motion is responsible for preferential a-axis rotational excitation of the
product. This specific dynamical effect needs to be included for future quantum
scattering studies on the step-like structure in the ketene photodissociation.

Because of the importance of this work and the questions raised around it,
this system has attracted considerable attention in the theoretical dynamics com-
munity. The questions raised in the experimental study of the ketene photodissocia-
tion have been investigated extensively. It is becoming clear that two issues are
crucial to the understanding of the ketene photodissociation in the context of the
RRKM theory on the triplet surface.
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(1) The first concerns the dynamics of the internal conversion (IC) between

S1 and S0, and the intersystem crossings (ISCs) between S1 and T1, and S0 and

T1, as creation of a statistical ensemble of ketene molecules on the T1 surface

through ISCs from S1 and S0 is the prerequisite for the valid application of

the RRKM theory in the ketene dissociation. It is very important that the

ICS rate is much faster than the dissociation rate so that the bottleneck of the

dissociation from the S0 surface lies at the triplet transition state.

(2) The second issue concerns the shape of the barrier on the triplet T1 surface

as the effect of the tunnelling near the barrier has a significant effect on the

shape of the step-like structures of the dissociation rate.

In the complete report on the UV ketene photodissociation by Kim et al. [63],

vibrational frequencies for the triplet transition state on the top of the barrier have

been calculated to be 523i cm–1. The magnitude of the barrier frequency reflects the

barrier thickness, which is crucial to the tunnelling effect. Obviously, if the barrier

frequency is higher, the dissociation barrier should be thinner and allow tunnelling

to occur more easily. Therefore, the barrier frequency has a direct effect on the shape

of the step-like structures observed in the energy-dependent dissociation rate

constants. A barrier frequency of (100	 40)i cm–1 was used by Kim et al. to fit the

step-like structure in the energy-dependent dissociation rate constant. In 1996,

Gezelter and Miller [70] performed a detailed analysis of the effect of the barrier

frequency on the shape of the energy-dependent rate constant using the quantum

reactive scattering method with a discrete variable representation. The dissociation

rates arising from the reduced dimensionality computations accounting for one or

two internal modes gave good overall agreement with experiment, but the step-like

features in the ketene photodissociation were washed out by tunnelling through the

relatively narrow barrier predicted by the improved ab initio theory. Model calcula-

tions confirmed that a barrier frequency below 100i cm–1 is required to recover the

observed steps in k(E). Gezelter and Miller [70] suggested three possibilities for the

disagreement between the theory and experiment on the step-like structures observed

in the ketene photodissociation: (a) there is another transition state on the surface,

further out towards the product T1 channel; (b) surface-hopping dynamics are taking

place between the T1 and S0 PES; or (c) the ab initio barrier frequency is simply too

large.

More recently, Kaledin et al. [71] have investigated the dynamics of internal

conversions using direct surface-hopping classical trajectories where the energy

and gradient are computed on the fly by means of state-averaged complete active

space self-consistent field with a double-� polarized basis set. Three low-lying

electronic states, singlets S0 and S1 and triplet T1, are found to be involved in the

process of photodissociation of triplet state ketene. The major photodissociation

pathway to the triplet products was found to be S1 ! S0 ! T1 ! CH2(X
3B1)þ

CO(X 1þ). The theoretical results clearly show that the S0–T1 nonadiabatic transi-

tion creates the T1 species nonstatistically at restricted regions of phase space and

a large fraction of the T1 species thus created dissociates almost immediately, leaving

no time for equilibration of internal degrees of freedom on the triplet surface.

Whether a specific T1 trajectory dissociates rapidly or not is determined by the

amount of C–C stretch vibration at the S0–T1 branch point. This detailed study

suggested strongly that the T1 photodissociation process is highly nonstatistical, thus

making equilibrium-based statistical theories, such as RRKM theory, inapplicable
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for computing the dissociation rate. The conclusion obtained by this study does
not necessarily mean, however, that the step-like structure observed in the UV ketene
photodissociation by the Berkeley group is not related to the barrier transition
states. This structure could, in principle, still be related to the opening of different
barrier transition states. As intersystem crossing dynamics between S0 and T1 can be
energy dependent, the energy-dependent structure in the dissociation rate constant
could thus be modulated by the ICS dynamics.

On the issue of the ab initio barrier frequency on the triplet surface, King et al.
[72] have recently performed a very thorough theoretical investigation. They have
rigorously mapped out the intrinsic reaction paths connecting the in-plane transition
state to both the reactant and products at the TZ(2d1f, 2p) coupled-cluster singles
and doubles (CCSD) level of theory. Final potential-energy functions along the
entire reaction path have been determined with the aid of large atomic-orbital
basis sets and extensive electron correlation treatments. The final theoretical curve
is highly anharmonic in the transition-state region, displaying a classical barrier of
1045 cm–1, a critical C–C distance of 2.257 Å and a barrier frequency of 321i cm–1.
Even though this high-level barrier frequency is significantly lower than the
previously predicted ab initio barrier frequency of 523i cm–1 obtained by Kim et al.
[63], it is still much higher than the ca 100i cm–1 barrier height required to retain
the step-like structure in the triplet ketene dissociation rate constant. This detailed
theoretical investigation strongly indicates that errors in the ab initio barrier
frequencies are not responsible for the discord between quantum reactive scattering
calculations and experiment concerning step-like structures in the dissociation

Figure 21. Expanded view of the potential-energy profile of the transition state for the
triplet ketene in-plane transition-state fragmentation. The final theoretical curve
(solid line) is shown in comparison to quadratic functions (dashed lines) with barrier
frequencies of 100i, 200i and 321i cm�1.
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rate constant k(E). This conclusion is supported by examination of the expanded
view in figure 21 of the potential-energy profile of the transition state, in which the
difference between a barrier with 100i cm–1 frequency and that with 321i cm–1 is
so significant that it is unlikely to be caused by errors in the ab initio calculations.

Furthermore, there has been no clear experimental evidence that another
transition state on the surface, further out towards the product T1 channel, is
present. Therefore, these theoretical studies show that the step-like structure
observed in the ketene dissociation rate constant is probably not due to the barrier
transition-state structures. However, the agreement between theory and experiment
on the general trend in ketene triplet dissociation rate constants implies that the
monotonic increase in the ketene dissociation rate constant is probably due to
the sequential openings of the different barrier transition states even though the
step-like structure is too broad to be observed. The observed step-like structure
could be related to the energy-dependent intermolecular dynamics in view of the
study of Kaledin et al. [71]. Considering the difficulties encountered in explaining
all the details of the step-like structure observed in the original experiment using
the standard RRKM theory, the above opinion seems to be not unreasonable.

From all the theoretical studies, it is also easy to conclude that the triplet
ketene photodissociation seems not to be an ideal system for observing the structures
of QBS in a photodissociation experiment due to its complex intramolecular
dynamics and its barrier shape. It is also interesting to point out that a full quantum
theoretical picture of how to observe QBS structure in a unimolecular reaction is
yet clear. Much detailed investigation on both the theoretical and experimental
fronts is needed to further understand the role of the barrier transition states in
unimolecular dissociation processes.

In addition to ketene photodissociation, another similar study has been
carried out on NO2 photodissociation by the Wittig group [73–75] at USC using
the femtosecond pump–probe technique. Time-resolved, subpicosecond resolution
measurements of photoinitiated NO2 unimolecular decomposition rates were
measured for both molecular beam-cooled and room-temperature samples. The
molecules were excited by 375–402 nm tunable subpicosecond pulses having
bandwidths 220 cm–1 to levels that are known to be thorough admixtures of the
2B2 electronically excited state and the 2A1 ground electronic state. Subsequent
decomposition was probed by a 226 nm subpicosecond pulse that excited laser-
induced fluorescence (LIF) in the NO product. When increasing the amount of
excitation over the dissociation threshold, an uneven, ‘step-like’ increase in the
decomposition rate vs. energy was observed for the expansion-cooled samples
(see figure 22). The step structures were spaced roughly by 100 cm–1. These steps
were tentatively assigned to the barrier bending vibration state structures at the
transition state. In contrast to the expansion-cooled samples, the room-temperature
samples exhibit a smooth variation in the reaction rate vs. photon energy. This
is clearly an important experimental achievement in the study of unimolecular
dissociation processes.

There are, however, several questions that need to be answered clearly in order
to relate the step-like structures observed to barrier transition-state structures
in the NO2 photodissociation. First, even though the structure observed in the
energy-dependent rate constant is very clear, its relation to the barrier bending
vibration state remains be clarified because the 100 cm�1 bending is significantly
lower than the bending frequency (758.6 cm�1) of the NO2 molecule. The transition
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state bending frequency at the transition state should be notably lower than the
NO2 bending frequency; whether it can be as low as 100 cm�1 remains to be seen.
Therefore, the assignment of the step-like structures is at most preliminary. Second,
the assumption that rapid intramolecular vibrational redistribution (IVR) is much
faster than dissociation could be in question because of very fast dissociation
in NO2 photodissociation. It is likely that the IVR rate is at most comparable to,
if not slower than, dissociation. Therefore, this system could be dynamical instead
of statistical. Therefore, the validity of applying the RRKM theory in this case
could be called in question. As we have pointed out above, it is not completely
clear in an exact theoretical picture how the energy-dependent dissociation rate
structures are related to the transition-state structures in the dynamical dissociation
process. In view of the above discussions, the possibility that the observed
step-like structure in NO2 photodissociation is due to some dynamical feature
in the dissociation rather than to the transition-state structure cannot be ruled
out entirely. This demonstrates once again the difficulties in trying to observe
transition-state structures in a unimolecular dissociation process.

In another example of observing transition state structures in unimolecular
processes, Choi et al. [76] have studied the cis–trans isomerization process.
The cis–trans isomerization rates of trans,trans-1,3,5,7-octatetraene (OT) on the
first excited singlet state potential surface were obtained as a function of vibrational
energy by measuring the fluorescence lifetimes. An interesting stepwise increase
in the isomerization rate with increasing energy was also observed. The authors
attributed this stepwise structure to the quantization of the vibrational levels of
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Figure 22. Unimolecular decay rate as a function of the quantity (photon energy –D0) (i.e.
essentially the energy in excess of reaction threshold) for expansion-cooled samples.
The lengths of the rectangles represent the spectral bandwidths of the corresponding
pump pulses.
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the transition state for the cis–trans isomerization of a double bond. The energy
spacing of 80	 10 cm�1 between the first two steps was tentatively assigned to an
in-plane bending vibration of the transition state [77]. The isomerization threshold
was determined to be 2140 cm�1 on the excited surface. This experimental observa-
tion of the step is clearly very interesting and also intriguing. The transition state
of the cis–trans isomerization has not been mapped for this system, and a complete
RRKM picture is lacking because of the limited information on the transition
state. Therefore, the assignment of the step is based on the limited knowledge of
the transition-state structures. A complete ab initio analysis on the transition state
of cis–trans isomerization is needed to support the assignment of the step. It is
also interesting to point out that statistical presumption of the RRKM theory
is likely to be valid in this case because the IVR at even 2200 cm�1 for the OT
molecule should already be significant, whereas the isomerization is relatively slow
on a microsecond time scale.

Overall, significant advances in observing transition-state structures have been
made for the above cases in unimolecular reaction processes. However, a clear-cut
example has not yet appeared in the context of RRKM theory. More experimental
and theoretical studies are required in order to search for an ideal and clear-cut
example in this endeavour. Experimentally, it is necessary to look for an ideal
system that allows us to observe the transition-state structures without the compli-
cation of intramolecular dynamics and the barrier effect as in the ketene photo-
dissociation. Theoretically, it would be interesting to study photodissociation
dynamics of an ideal molecular system at the full quantum dynamical level to see
how the energy-dependent dissociation rate constant is related to the transition-state
structures. This undertaking will certainly provide a clear map for observing QBS
structures in unimolecular dissociation processes.

5. Conclusions

The concept of QBS has been essential in the interpretation of chemical reac-
tion rates and reaction dynamics. However, observing these QBS has been a diffi-
cult task. In this article, we have provided an overview of the theory of the QBS
and the current status of observing these states. In bimolecular reactions, collisional
energy-dependent state-to-state differential cross-section measurement is the key
to observing the QBS. Such measurement could significantly reduce the impact
parameter averaging effect in crossed molecular beam studies. Recent studies of
the HþH2 reaction have demonstrated that observing QBS for this simplest
chemical reaction is clearly possible experimentally with the idea described above.
Even though observing QBS experimentally in the unimolecular dissociation of
ketene has received great attention about a decade ago, the theoretical support is
still not there for this case. It is clear that much of the detailed intramolecular
dynamics in ketene remained to be clarified before this case can be regarded as
a benchmark example of the observation of QBS in unimolecular reactions. This
clearly demonstrates that even though the concept of QBS is extremely important,
its observation remains elusive in unimolecular molecular reactions.
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